

## EARLY PHASE DEVELOPMENT CONSIDERATIONS OF ANTIBODY-PAYLOAD CONJUGATES

Muctarr Sesay, CSO and VP of Bioconjugation Chen Fang, Senior Scientist

#### PRESENTATION OVERVIEW

- GBI history and capabilities
- Requirements for a successful biologics drugs design and manufacturing
- Case studies:
  - Antibody-drug conjugate Client A
  - Radioimmunoconjugate Client B
- Conclusion



# HISTORY

- Spun-off from the Goodwin Institute of Cancer Research in 1992
- A quarter century of experience and expertise in the Contract Development and Manufacturing of Biologics; the earliest fully integrated CDMO globally from early phase development to late stage clinical trials
- Over 400 projects with more than 150 clients
- Acquired by Wallace Pharmaceuticals, India (Wallace Group of Pharma Companies) in December, 2004









# Considerations for a Successful ADC – From a CDMO Perspective

#### • Design Considerations

- Anatomy/components of an ADC mAb, linker & payload
- Target
- Potency
- Mechanism of action
- PK/PD
- In vivo stability
- Manufacturing strategy
  - Screening, optimization, scale-up and conformance runs
  - Product quality/compliance free payloads, solvents
  - Stability storage buffer, temperature and excipients
  - Process economics cost of goods



#### FORMULATION CONSIDERATIONS



BIOTE

Phos: Phosphate Cit: Citrate Tre: Trehalose Arg: Arginine

#### MISCELLANEOUS CONSIDERATIONS

- DOTA-based metal coordination
  - $M^{3+} = Lu^{3+}$ ,  $In^{3+}$ ,  $Ga^{3+}$ ,  $Y^{3+}$
- Inhibition of DOTA:M<sup>3+</sup> coordination
  - Citrate: Strong chelator
  - Imidazole/histidine: Weak chelator
  - Polysorbate interference





Buffer Type

### ANTI-HAAH ADC – CLIENT A

| Name | Payload Type   |
|------|----------------|
| DM1  | Maytansine     |
| MMAE | Monomethyl     |
|      | auristatin E   |
| DUO  | Duocarmycin SA |





Maytansine

Duocarmycin SA

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$ 

- PAN-622: Anti-HAAH mAb
- HAAH: Human aspartyl (asparaginyl) β-hydroxylase

Monomethyl auristatin E



#### POTENCY SCREENING – CLIENT A





K Malhotra, et al, AACR-NCI-EORTC Molecular Targets and Cancer Therapeutics, October, 2017

#### PROOF-OF-CONCEPT IN VIVO STUDY – CLIENT B



Thomsen-Friedenreich Antigen (TF-Ag)

MDA-MB 231

H2aL2a-DM1 15 mg/kg I.P.

BIOTE

\* Unpaired t test of PBS Versus hJAA-F11-DM1

#### CONCLUSIONS

#### • CDMO considerations

• Goodwin is highly experienced in developing strategies for the manufacture of ADCs for clinical trials.

#### • Formulation considerations

• Buffer components and excipients compatibility with metal-chelation chemistry

#### • Pre-clinical evaluation

• Anti-TF-Ag ADC has considerable antitumor effect on proof-of-concept animal models.





#### Acknowledgement

- Karam Birthare
- Tony Gebhard
- Hyung-Il Lee
- Jack Vicalvi
- Kim Mendes

Goodwin Biotechnology World ADC San Diego November 13<sup>th</sup> 2018